Su(H)-mediated repression positions gene boundaries along the dorsal-ventral axis of Drosophila embryos.
نویسندگان
چکیده
In Drosophila embryos, a nuclear gradient of the Dorsal (Dl) transcription factor directs differential gene expression along the dorsoventral (DV) axis, translating it into distinct domains that specify future mesodermal, neural, and ectodermal territories. However, the mechanisms used to differentially position gene expression boundaries along this axis are not fully understood. Here, using a combination of approaches, including mutant phenotype analyses and chromatin immunoprecipitation, we show that the transcription factor Suppressor of Hairless, Su(H), helps define dorsal boundaries for many genes expressed along the DV axis. Synthetic reporter constructs also provide molecular evidence that Su(H) binding sites support repression and act to counterbalance activation through Dl and the ubiquitous activator Zelda. Our study highlights a role for broadly expressed repressors, like Su(H), and organization of transcription factor binding sites within cis-regulatory modules as important elements controlling spatial domains of gene expression to facilitate flexible positioning of boundaries across the entire DV axis.
منابع مشابه
Lateral Gene Expression in Drosophila Early Embryos Is Supported by Grainyhead-Mediated Activation and Tiers of Dorsally-Localized Repression
The general consensus in the field is that limiting amounts of the transcription factor Dorsal establish dorsal boundaries of genes expressed along the dorsal-ventral (DV) axis of early Drosophila embryos, while repressors establish ventral boundaries. Yet recent studies have provided evidence that repressors act to specify the dorsal boundary of intermediate neuroblasts defective (ind), a gene...
متن کاملSize-dependent regulation of dorsal-ventral patterning in the early Drosophila embryo.
How natural variation in embryo size affects patterning of the Drosophila embryo dorsal-ventral (DV) axis is not known. Here we examined quantitatively the relationship between nuclear distribution of the Dorsal transcription factor, boundary positions for several target genes, and DV axis length. Data were obtained from embryos of a wild-type background as well as from mutant lines inbred to s...
متن کاملRab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila
In eukaryotes, vesicle trafficking is regulated by the small monomeric GTPases of the Rab protein family. Rab11, (a subfamily of the Ypt/Rab gene family) an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In an earlier communication, we have shown th...
متن کاملThe Dorsal-related immunity factor (Dif) can define the dorsal-ventral axis of polarity in the Drosophila embryo.
In Drosophila embryos, dorsal-ventral polarity is defined by a signal transduction pathway that regulates nuclear import of the Dorsal protein. Dorsal protein's ability to act as a transcriptional activator of some zygotic genes and a repressor of others defines structure along the dorsal-ventral axis. Dorsal is a member of a group of proteins, the Rel-homologous proteins, whose activity is reg...
متن کاملDrosophila WntD is a target and an inhibitor of the Dorsal/Twist/Snail network in the gastrulating embryo.
The maternal Toll signaling pathway sets up a nuclear gradient of the transcription factor Dorsal in the early Drosophila embryo. Dorsal activates twist and snail, and the Dorsal/Twist/Snail network activates and represses other zygotic genes to form the correct expression patterns along the dorsoventral axis. An essential function of this patterning is to promote ventral cell invagination duri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Developmental cell
دوره 31 1 شماره
صفحات -
تاریخ انتشار 2014